Page 138 - Handbook Bachelor Degree of Science Academic Session 20202021
P. 138

Faculty of Science Handbook, Academic Session 2020/2021


               2.   Box, G. E. P., Hunter, W. G., & Hunter, J. S. (2005).
                                        nd
                   Statistics for experimenters (2  ed.). John Wiley.
               3.   Tabachnick, B. G., & Fidell, L. S. (2007). Experimental
                   designs using ANOVA. Duxbury.
               4.   Myers, R.H. (1990). Classical and modern regression
                   analysis with applications (2  ed.). Duxbury.
                                       nd



               SIT3013   ANALYSIS  OF  FAILURE  AND  SURVIVAL
                        DATA

               Survival distributions, hazard models. Reliability of systems,
               stochastic models. Censoring and life-tables. The product-
               limit estimator. Parametric survival models under censoring.
               Cox proportional hazards model and other basic models with
               covariates.

               Assessment:
               Continuous Assessment:       40%
               Final Examination:           60%

               Medium of Instruction:
               English

               Soft Skills:
               CS1, CTPS2

               References:
               1.   Sherwin  D.J.,  &  Bossche  A.  (2012),  The  reliability,
                   availability   and   productiveness   of   systems.
                   Netherlands: Springer.
               2.   Peter J. Smith. (2002). Analysis of failure and survival
                   data. Chapman & Hall.
               3.    Tableman  M.,  &  Kim  J.S.  (2004).  Survival  analysis
                   using  S:  Analysis  of  time-to-event  data.  Chapman  &
                   Hall.
               4.   Smith  D.J.  (2011).  Reliability  maintainability  and  risk:
                   Practical methods for engineers (8  ed.). Elsevier Ltd.
                                           th


               SIT3014   INTRODUCTION TO BAYESIAN
                        STATISTICS

               Bayes'  Theorem.  Bayesian  framework  and  terminology.
               Bayesian  inference.  Prior  formulation.  Implementation  via
               posterior sampling. Bayesian decision theory. Application to
               real-world problems.

               Assessment:
               Continuous Assessment:       40%
               Final Examination :          60%

               Medium of Instruction:
               English

               Soft Skills:
               CS3, CTPS3

               References:
                1.   Lee, P. M. (1991). Bayesian statistics: an introduction.
                    Oxford University Press.
                2.   Hoff, P. D. (2009). A first course in Bayesian statistical
                    methods. Springer.
                                                         nd
                3.   Koch, K. (2007). Introduction to Bayesian statistics (2
                    ed.). Springer.
                4.   Cowles,  M.  K.  (2013).  Applied  Bayesian  statistics:
                    With R and OpenBUGS examples. Springer.







                                                           137
   133   134   135   136   137   138   139   140   141   142   143