Page 139 - BUKU PANDUAN PhD 20142015
P. 139

PXHD 7103     ANALISIS DATA KUANTITATIF DALAM PENDIDIKAN                           3 KREDIT
                           QUANTITATIVE DATA ANALYSIS IN EDUCATION                                  CREDITS

            Sinopsis/Synopsis

            Fokus  kursus  ini  akan  membincangkan  beberapa  teknik  penganalisisan  data  kuantitatif  serta
            anggapannya  supaya  calon  dapat  memilih  statistik  yang  bersesuaian  untuk  menjawab  soalan  kajian
            mereka.  Antara  tajuk  penting  yang  akan  dibincangkan  adalah  statistik  deskriptif  dan  inferensi  lanjutan
            dalam  penganalisisan  data  seperti  analisis  bivariat  untuk  menguji  perbezaan,  analisis  bivariat  untuk
            menguji  hubungan,  teknik  bukan  parametrik,  ANOVA  dua  hala,  analisis  haluan,  analisis  residual,  dan
            teknik  multivariat.  Teknik  multivariat  yang  akan  dibincangkan  temasuk  analisis  regresi,  analisis  faktor,
            model  persamaan  berstruktur,  analisis  rumpun,  korelasi  kanonikal,  model  siri  tempoh,  analisis
            diskriminan,  dan  MANOVA.  Kursus  ini  akan  dibantu  dengan  penggunaan  pakej  perisian  statistik  yang
            tertentu. Calon juga akan didedahkan kepada format terkini melaporkan keputusan berbentuk kuantitatif.

            The focus of this course are to discuss several statistical techniques in analyzing quantitative data as well as several
            assumptions and practical considerations underlying application of these techniques so that candidates are able to
            choose appropriate statistical techniques to answer their research questions. Topics in this course include advanced
            statistics (descriptive and inferential) such as bivariate analyses to test for differences, bivariate analyses to test for
            relationships,  nonparametric  techniques,  two-way  ANOVA,  path  analysis,  residual  analysis,  and  multivariate
            techniques.  Among  the  multivariate  techniques  that  will  be  discussed  are  regression  analysis,  factor  analysis,
            structural equation modelling, cluster analysis, canonical correlation, time series modelling, discriminate analysis, and
            MANOVA. The course will be supported by the use of statistical software packages. Candidates will also be exposed
            to the current convention of reporting their quantitative data.

            Kaedah Penilaian     : Penilaian berterusan: 70%, peperiksaan 30%
            Assesment Method     : Continuous assessment assignments 70%, exam 30%

            Bahasa Pengantar     : Bahasa Malaysia dan Bahasa Inggeris
            Medium of Instruction   : Malay and English

            Rujukan Utama/Main References:

            Blaikie, N. (2003). Analyzing quantitative data: From description toexplanation. New Delhi:
                  Sage.
            Byrne, D. (2002). Interpreting quantitative data. New Delhi: Sage.
            Hardy, M. A., & Bryman, A. (2004). Handbook of data analysis. New Delhi: Sage.
            Muijs, D. (2004). Doing quantitative research in education with SPSS. London: Sage
            Spicer, J. (2004). Making sense of multivariate data analysis: An  intuitive approach. New Delhi: Sage
















                                                                                                      139
   134   135   136   137   138   139   140   141   142   143   144