Page 120 - Handbook: Postgraduate (PhD) 2015 2016
P. 120

PXHD 7103    ANALISIS DATA KUANTITATIF DALAM PENDIDIKAN                             3 KREDIT
                           QUANTITATIVE DATA ANALYSIS IN EDUCATION                                  CREDITS

            Sinopsis/Synopsis

            Fokus  kursus  ini  akan  membincangkan  beberapa  teknik  penganalisisan  data  kuantitatif  serta  anggapannya  supaya  calon  dapat
            memilih  statistik  yang  bersesuaian  untuk  menjawab  soalan  kajian  mereka.  Antara  tajuk  penting  yang  akan  dibincangkan  adalah
            statistik deskriptif dan inferensi lanjutan dalam penganalisisan data seperti analisis bivariat untuk menguji perbezaan, analisis bivariat
            untuk menguji hubungan, teknik bukan parametrik, ANOVA dua hala, analisis haluan, analisis residual, dan teknik multivariat. Teknik
            multivariat yang akan dibincangkan temasuk analisis regresi, analisis faktor, model persamaan berstruktur, analisis rumpun, korelasi
            kanonikal, model siri tempoh, analisis diskriminan, dan MANOVA. Kursus ini akan dibantu dengan penggunaan pakej perisian statistik
            yang tertentu. Calon juga akan didedahkan kepada format terkini melaporkan keputusan berbentuk kuantitatif.

            The focus of this course are to discuss several statistical techniques in analyzing quantitative data as well as several assumptions and
            practical  considerations  underlying  application  of  these  techniques  so  that  candidates  are  able  to  choose  appropriate  statistical
            techniques to answer their research questions. Topics in this course include advanced statistics (descriptive and inferential) such as
            bivariate analyses to test for differences, bivariate analyses to test for relationships, nonparametric techniques, two-way ANOVA, path
            analysis,  residual  analysis,  and  multivariate  techniques.  Among  the  multivariate  techniques  that  will  be  discussed  are  regression
            analysis,  factor  analysis,  structural  equation  modelling,  cluster  analysis,  canonical  correlation,  time  series  modelling,  discriminate
            analysis, and MANOVA. The course will be supported by the use of statistical software packages. Candidates will also be exposed to
            the current convention of reporting their quantitative data.

            Kaedah Penilaian  : Penilaian berterusan: 70%, peperiksaan 30%
            Assesment Method     : Continuous assessment assignments 70%, exam 30%

            Bahasa Pengantar : Bahasa Malaysia dan Bahasa Inggeris
            Medium of Instruction   : Malay and English

            Rujukan Utama/Main References:

            Blaikie, N. (2003). Analyzing quantitative data: From description toexplanation. New Delhi:
                  Sage.
            Byrne, D. (2002). Interpreting quantitative data. New Delhi: Sage.
            Hardy, M. A., & Bryman, A. (2004). Handbook of data analysis. New Delhi: Sage.
            Muijs, D. (2004). Doing quantitative research in education with SPSS. London: Sage
            Spicer, J. (2004). Making sense of multivariate data analysis: An  intuitive approach. New Delhi: Sage


































                                                                                                          119
   115   116   117   118   119   120   121   122   123   124   125